Free machining steel

Free machining steel is steel that forms small chips when machined. This increases the machinability of the material because smaller chips reduce the length of contact between the workpiece and the cutting tool, thus reducing friction, heat, power required, and wear on the tool. It also reduces the chance of chip entanglement. Free machining steel costs 15 to 20% more than a standard steel, but this is made up by increased machining speeds, larger cuts, and longer tool life.[1]

The disadvantages of free machining steel are: ductility is decreased; impact resistance is reduced; copper-based brazed joints suffer from embrittlement with bismuth free machining grades; shrink fits are not as strong.[2]

Contents

Types

There are four main types of free machining steel: leaded, resulfurized, rephosphorized and resulfurized, and super. Super free-machining steels are alloyed with tellurium, selenium, and bismuth.[3]

SAE steel grades for free-machining steel[3]
Type SAE designation
Leaded 12L13
12L14
Rephosphorized and resulfurized 1211
1212
1213
Resulfurized 1117
1118
1119

Mechanics

Free machining steels are carbon steels that have sulfur, lead, bismuth, selenium, tellurium, or phosphorus added. Sulfur forms the compound manganese sulfide, which is soft and acts as a chip-breaking discontinuity. It also acts as a dry lubricant to prevent a built up edge on the cutting tool. Lead works in a similar way to sulfur. Bismuth achieves a free machining steel by melting into a thin film of liquid for a fraction of a microsecond to lubricate the cut. Other advantages to bismuth include: more uniformly distributed because of its similar density to iron; more environmentally friendly, as compared to lead; still weldable.[1]

References

  1. ^ a b Degarmo, p. 117.
  2. ^ Degarmo, p. 118.
  3. ^ a b Carbon steel, archived from the original on 2010-02-28, http://www.webcitation.org/5ntWIDrKc, retrieved 2010-02-28. 

Bibliography